

ERAPOL POLYURETHANE ELASTOMER

Era Polymers Pty Ltd

Version No: 1.1 Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 1

Issue Date: 17/03/2016 Print Date: 17/03/2016 Initial Date: 17/03/2016 S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	ERAPOL POLYURETHANE ELASTOMER
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Details of the supplier of the safety data sheet

Registered company name	Era Polymers Pty Ltd
Address	25-27 Green Street NSW 2019 Australia
Telephone	+61 (0)2 9666 3788
Fax	+61 (0)2 9666 4805
Website	www.erapol.com.au
Email	erapol@erapol.com.au

Emergency telephone number

Association / Organisation	CHEMWATCH
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

CHEMWATCH EMERGENCY RESPONSE

Primary Number	Alternative Number 1	Alternative Number 2	
1800 039 008	+612 9186 1132	Not Available	

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification [1]	Not Applicable

Label elements

	GHS label elements	Not Applicable	
	SIGNAL WORD	NOT APPLICABLE	

Hazard statement(s)

Not Applicable

Version No: 1.1 Page 2 of 8 Issue Date: 17/03/2016

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

Precautionary statement(s) Prevention

P101	If medical advice is needed, have product container or label at hand.	
P102	P102 Keep out of reach of children.	
P103 Read label before use.		

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	100	Polyurethane Solid

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact If this product comes in contact with eyes: Wash out immediately with water. If triitation continues, seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.		
If skin or hair contact occurs: Skin Contact Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.		
Inhalation	halation If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.	
Ingestion Ingestion Ingestion In Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.		

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit)

Fire/Explosion Hazard

- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. • Prevent, by any means available, spillage from entering drains or water courses.
 - Use water delivered as a fine spray to control fire and cool adjacent area. Fire Fighting
 - ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire
 - ▶ Equipment should be thoroughly decontaminated after use.

Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).

Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.

▶ Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the

In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent

Version No: 1.1 Page 3 of 8 Issue Date: 17/03/2016

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

- difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC).
- When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts.
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Lusually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- ▶ Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec.
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source.
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include; carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

- ► Clean up all spills immediately. Avoid contact with skin and eyes
- Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.
- ▶ Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Do NOT use air hoses for cleaning
- ▶ Place spilled material in clean, dry, sealable, labelled container.

Major Spills

Minor Spills

- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Control personal contact with the substance, by using protective equipment and dust respirator.
- ▶ Prevent spillage from entering drains, sewers or water courses.
- Avoid generating dust.
 - Sweep, shovel up. Recover product wherever possible.
 - Put residues in labelled plastic bags or other containers for disposal.
 - ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling. Work clothes should be laundered separately
- Use good occupational work practice
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices Safe handling
 - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
 - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
 - ▶ Do not use air hoses for cleaning.
 - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
 - ► Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
 - Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
 - Do not empty directly into flammable solvents or in the presence of flammable vapors.
 - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

 Version No: 1.1
 Page 4 of 8
 Issue Date: 17/03/2016

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Lined metal can, lined metal pail/ can.
- Plastic pail.
- ▶ Polyliner drum.
- Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks

Storage incompatibility

Avoid contamination of water, foodstuffs, feed or seed

Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
ERAPOL POLYURETHANE ELASTOMER	Not Available	Not Available	Not Available	Not Available
Ingredient			Revised IDLH	
Polyurethane Solid			Not Available	

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- ▶ If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
 - ▶ Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
 - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

	Lower end of the range	Upper end of the range
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
	2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
	3: Intermittent, low production.	3: High production, heavy use
	4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction

Version No: **1.1** Page **5** of **8** Issue Date: **17/03/2016**

apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

Personal protection

- ▶ Safety glasses with side shields
- ▶ Chemical goggles

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- ► frequency and duration of contact,
- ► chemical resistance of glove material,
- glove thickness and
- ▶ dexterity

• dexient

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent)

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ► When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
 Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- nitrile rubbebutvl rubber.
- ► fluorocaoutchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

No special equipment needed when handling small quantities.

Body protection

Hands/feet protection

See Other protection below

Other protection

- OTHERWISE:

 Overalls.
 - ▶ Barrier cream.
- ► Eyewash unit.

Thermal hazards

Not Available

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^{^ -} Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Solid		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available

Issue Date: 17/03/2016 Version No: 1.1 Page 6 of 8

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
Eye	Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result.
Chronic	Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

ERAPOL POLYURETHANE	TOXICITY	IRRITATION
ELASTOMER	Not Available	Not Available

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Legend:

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	0	Reproductivity	0
Serious Eye Damage/Irritation	0	STOT - Single Exposure	0
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

X − Data available but does not fill the criteria for classification
 ✓ − Data required to make classification available

O – Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

TOXIONY					
Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
Not Available	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Legend:	Aquatic Toxicity Data (Estima	ricity Data 2. Europe ECHA Registere ated) 4. US EPA, Ecotox database - A TI (Japan) - Bioconcentration Data 8.	quatic Toxicity Data 5. ECETOC		

 Version No: 1.1
 Page 7 of 8
 Issue Date: 17/03/2016

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Y
Canada - NDSL	Y
China - IECSC	Y
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	Υ
Korea - KECI	Υ
New Zealand - NZIoC	Y
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit} \\$

IARC: International Agency for Research on Cancer

Version No: 1.1 Page 8 of 8 Issue Date: 17/03/2016

ERAPOL POLYURETHANE ELASTOMER

Print Date: 17/03/2016

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index